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"' The relative contriburion ro household dusr of lead parriclesfrom a mining waste
.‘.;_‘ superfund sire and lead-based painr is investigated. Auromared individual particle
e analysis (IPA) based on scanning electron microscopy (SE4{} and X-ray energy
%, specrroscopy (EDX)is used ro develop a classification algorithmfor determining lead
47 particle source contribution in household dus: vacuum bags. On a volume basis the
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proponion derived from the mining wasre isfound to be 26%. the proportion derived

from a painr source is 16%, and e proportionfrom soil is 37%.In 15%0cf the lead.
parricles idenrified a specific originating source could not be derermined. Using a

weighting methodaccountingfor ke lead concentrationper particle rarher rhanvolume

the contributions Were similarfor mining wasre and painr, 21% and 23%, respectively,
bur the soil conmiburion was reduced to 8%, and rhe sourcefor 29% of the lead could

e nor be idenrified. Theseresults suggesred rhar the contriburion of wasre piles ro rhe lead

present inhousehold dust isat least asimporrant asource aspaint. Thereés evidenceto

suggest that a largepercrnrage of lead in the soil alts originated from rhe wasrepiles
i and rhe overall contribution, rherefore, of rhe wasre piles may be greater rhan the

: contribution from painr.
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BACKGROUND -

As part of astudy of the Big River Mine Tailings Superfund Site Lead Exposure Study (ATSDR.
1997), Individual Particle Analysis techniques were applied to household vacuum cleaner bag
dust from residential units and to the potential source materials, mine tailing waste and paint.
Lead is paturaily occurring in the area, but the deposition of mine tailings at ground surface has
-made lead exposure to people more prominent through use as fill material and wind blown
deposition. Lead is also a health hazard in older homes where lead-based paint had been used.
People living near the site have been exposed to lead through incidental ingestion of soils and
dust contaminatedwith lead (ATSDR, 1994)and increased percentage of elevated blood leads in
children when compared to a control site hias been attributed to the presence of the mine tailings
'(ATSDR, 1997).The contribution of the lead mining waste, paint and other sotrces is important
to know forexposure and risk assessmentevaluation.These findingscanbe used for development
of intervention approachesfor reducing the exposure hazards, and setting priorities for prevention.
The study objectives of this component were to: (1) determine whether lead particulate in the
mining waste materials could be distinguished from other sources of lead-bearing origin; if so.
(2) to develop a classification scheme that will distinguish between lead particulate originating
from mining waste from that of paint; and, (3) to estimate the percent contributions of mine
waste and paint to the lead present in household dusts. Presented are a summary of the findings.

Lead in household dust is derived from a variety of sources. The major potential source in
residential properties is lead-based paint (Lanphear et al., 1996). Further contributions to dust
lead loading include hobbies (soldering, ammunition reloading, etc.), lead derived from the work
place eavironment, infiltration Of atmospheric aerosols and transport (windblown, foot traffic,
etc.) of contaminated soils into the home (Fiacitelit etal., 1995;NIOSH, 1995). Given the variety
of sources. it is reasonable to assume that particulate lead in household dust may exhibit a great
diversity in its physical and chemical forms; aspects which bear on the uptake of lead in mammanan
systems (Barltrop and Meck, 1979; Davis etal., 1992; Freeman et al., 1992; Dieter et al., 1993).
Therefore, exposure studies are enhanced through estimates of lead source attribution. Inability
to assess source contributions limits the reliability of exposure determinations. From a public
health perspective this complicatesdecisions on intervention measures.

. Source apportionment of lead in household dust, soil, and airborne particles from potentially
contributing sources is difficult. In piggciple, the receptor model approach used for atmospheric
aerosols (Friedlander, 1973; Dzuhay et al.. 1984) could be applied, but environmental
transformationsof lead (Olson and Skogerboe, 1975;Johnson and Hunt, 1995) make thiSdifficult
for soilsbecause the constant source composition assumption needed (Watson,1982)is violated.
Bulk chemical analysis of 0ils and dusts (Davies et al.. 1985; Fergussoa and Schreeder, 1985;
Culbard et al.. 1988)have lacked resolution, indicating merely that soil d w contribute to house
dust. The “best tracer method" of Stanek and Calabrese (1995) shows potential for quantifying
the amount of soil lead in house dust, hut has not been applied to such determinations. Similarly,
stable isotope tracer methods (Yaffe et al., 1983;Robinowitz, 1987)have only had limited success.

Radio isotope studies ars prone to potential problems of source blurring due to mixing of lead
from various sources.
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A third method, automated individual particle analysis {IPA), was selected for source
apportionment in the present study. IPA based on scanning electron microscopy (SEM) and

X-ray energy spectroscopy (EDX), has been used to assess the potential originating sources of

the lead. These techniques have been shown o discriminate between lead particles at the individual
level when bulk sample analysis indicate compositionally similar products (Hunt et al., 1992;

VanderWood. 1993). Chemical and elemental morphology and composition is determined through -

SEM and EDX analysis. Particles with morphologies and elemental associations' characteristic
of different particulate lead source types can be identified and enumerated. If a classification
scheme for IPA results can be developed that provides distinctive **signatures™ for the different
source typematerials, it can be applied to other related samplesanalyzed under identical conditions,
providing a descriptive source apportionment (Huntet al.. 1991).

Particulate lead transported to, or originated within, an interior residential environmentdoes not
appear, subsequently,to undergo significant chemical transformations that alter its **original
physicochemical form. Once a particulate has entered the indoor environment it is protected
from geochemical weathering. Based on knowledge of product composition and potential
degradation products, groups of particles that most likely are derived from the same source can
be. probabilistically identified on the basis of morphology and composmon This automated
microscopy-based method has been used in the United Kingdom as part'of a comprehensive
stuhy of lead contamination in environmental dusts (Thorton et al.. 1994). for the source
apportionment of lead in house dusts (Huntetal.. 1994).as part of a lead contamination study in
Port Pirie, Australia (Body et al., 1988) and in studies to determine lead sourcesbear a lead

smelter nMissouri (Vander Wood and Brown, 1992). At present, this method generates essentially.

semi-quantitative results. but should be sufficientfor disctiminating between lead derived from
paint alone or other environmental sources, such as mining waste piles (Johnson and Hunt, 1995).

METHODOLOGY

Field Samples Characterized For Clasgification Scheme

Composites from five mining waste piles, randomly selected lead-bared paint chip samples
collected from study area homes, and eight yard soil composites were characterized and used in
development of the classification scheme to determine particulate lead origin in household dust.
The results of the classification scheme was' applied to household dust samples: eight homes
selected randomly from 25 homes from the study area, and two homes from control areas. The
household vacuum bags were collected from the occupant vacuum cleaners during previous
environmental sampling (ATSDR. 1997).Eligibility was determined by the presence of lead in
each of the following components at elevated levels: {1} the household average of lead-based
paint on friction surfaces (such as windows and doors) within a child's bedroom and primary
indoor play areas was = 10 mg/em?; (2)samples of yard soil composite more than five feet from
painted outside walls which contained 2 400 ppm; (3) composite sample of household vacuum
cleaner bag dust 2 200 ppm; and, (4) interior window sill wipe samples = 500 pg/fi2.
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IPA Characterization
The individual particle analysis protocols detailed below for specimen preparation and scanning
electren microscope characterizationwere derived from those of Hunt et al. (1992) and Johnson

and Hunt (1995). Since, in general. only a few percent of the pasticles in soils or house dusts

contain detectable lead by x-ray microanalysis. the analytical challenge for such microscopy-
based approaches is to provide a time efficient characterization of statistically significant
populations of features. QU analytical strategy employed size fractionation of the environmental
samplesto optimize instrameatal conditions;more rapid and accurate feature location is possible
for a limited size range. It also utilized a particle search strategy of "*high" thresholding that
selects high average atomic number featuresfor characterization,usually excluding from analysis
such geologic materials as quartz,clays or limestone. Lead containing features aggregated with
such particlesor present on them in the form of a precipitation rind would, however, be identified
and analyzed by this procedure.

Paint samples, randomly selected from study homes, and one specimen from a Syracuse house,
were ground with a micromertar. and pestle and deposited directly on polycarbonate membranes
affixed to graphite SEM stubs. Composite samples from waste pile (Chat) collections and il
collections were sieved through an 85 pm opening monofilament polyester mesh. After
homogenization. sub-samples of this material were sonicated in aqueous solution and portions
were filtered onto 0.4 pum pore su e polycarbonate membranes and mounted in a similar fashion.
Composites of vacuum cleaner bag contents from the homes were subjected ts-wet sieving (10%
ethanol solution) through the 85 ptm mesh during application of ultra sound to separate inorganic
particles from the fibrous matrix. Portions of the separated material suspension were filtered
through polycarbonate membranes for analysis. For all SEM preparations. mess loading was
adjusted to obtain a monolayer of particles with sufficient space between features to minimize
adjacent particle X-ray fluorescence. All specimens were coated with carbon in a high vacuum
evaporator prior to analysis.

Each feature characterized by the IPA procedures contains information on size, estimated volume,
and the relative X-ray emission intensity for 25 differentelements. The X-ray spectrometar regions
ofinterestand the net count corrections.\ggq._k overlapcorrectionsand elemental efficiency factors
were developed using NIST SRM 1633'(flyash), USGS Standard BCR-I. and NIST SRM 2710
(metals in soil). Using a procedure developed by Johnson et al. (1981). the estimated volume of
each feature, an assigned specific gravity. the relative X-ray intensity of each particle and the
expected molecular form of occurrence of each element for a given particle type were summed
over all observationsto compute a bulk chemical composition. The spectrometer set up we used
gave acceptable results for the'majorelement matrix of SRM 2710 (Johnson and Hunt, 1995)
and the lead concentration so determined was within 10%of the certified value. The percentage
ofnet X-ray countscontributed by each element monitored in each featurewas used fordeveloping
the particle classification criteria.
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The instrumentation employed for the IPA characterizations was an ETEC AutoScan SEM

interfaced with a KEVEX 7500 X-ray spectrometer systemand controlled by aleMont Scientific .

DA-10 Image Analysis System. All analyses were carried out at a magnification of 300x and a
digital scan generator pixel density sufficient to characterize particles as Srall 3505 pm. A few
micro-crystals of NaCl were deposited on the edge of each specimen as an imaging standard.
The backscatter electron signal imaging threshoid was adjusted so that sodium chloride just
disappeared. Thus the features characterized were limited to those with average atomic number
14and higher. Limited normal thresholding analyses of the waste pile material were also carried
out to provide a general description of the particle types they contained.

RESULTSAND DISCUSSION

Analytical Limitations

The analytical results and their interpretation relative to the potential for children’s exposure to
lead in the study homes are of course limited by the context of the analytical techniques. We
emphasize that our observations are limited to particulate phases smaller than 85 ym in sue.
However, inadvertent ingestion of soils and dusts through the normal hand-to-mouth activity of
children is a major exposure pathway, and the size of particles on children’s hands is generally
smaller than 100 pm (Duggin et al.. 1985;Hunt, 1994; Wang et al., 1994). Characterization of
the size range distribution of household dust captured by occupants vacuum cleaner bags in an
urban area showed 50% of the total dust and lead containing dust mass was in the size fraction
less than 63 pum (Sterling, 1998). Other investigatorshave found similar results, Que Hee et al.,
(1985) reported that 77% of the lead in total household dust samples was less than 149ym, and
90% of the particles which adhere to a child‘s hands less than 10pm. The log normal geometric
mean {IlnGM) areaequivalent diameter for the lead bearingfeatures found in “high” thresholding
of chat and soil samples were 3.0 um and 1.6 {m, respectively. Individual heme dust samples
1nGM ranged from 1.2 um to 2.9 pm with a combined 1nGM of 2.02 pm, and all showed log
normal distributions. Thus, characterization of the sub-85um fraction would seem to carry a
substantial proportion of the information relative to potential exposure sources.

“High” thresholding for particle location offers a substantial advantage for time efficiency in the
particleanalysis. For instance, under aormal thresholding conditionswhere dl inorganic particles
are characterized, lead associated with ##&vaste pile materials was observed in less than 6% of
the features. Under “high” thresholding, 60—80% of the particles located contained detectable
lead. Analysis of several hundred lead-containing features could be accomplished in about 2
hours as opposed to 20+ hours using normal thresholding. For the house dusts, where bulk lead
concentrationswere significantly lower than those for the waste pile materials, this time saving
was necessary for the analysesto be feasible.

The accuracy of locating lead-bearing features is also increased by “high” thresholding. The
software controlling the SEM beam directs it to the.geometric center of a feature image, and
gathers X-ray informationfrom a circle whose diameter is one half the distance from the geometric
center of the image to the nearest edge. Lead-bearing inclusions, rinds or small lead rich particles
aggregated to larger features might not be analyzed with this strategy under nommal thresholding
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conditions; they would be located by “high” thresholding. Only the high atomic number portions
of a heterogeneous particle would be characterized in the latter case and the size measured for a
lead-bearing feature would not accurately reflect the size of the entire particle. Application of
ultra sound to disaggregate features during specimen preparation might also affect the size
distribution of some particle agglomerations.In the case of the vacuum cleanersamples, however,
sonication seemed the most accurate way of separating the inorganic particles fromthe organic
matrix. '

Particle Classification Scheme Development

The waste pile materials and the paint samples showed distinct particle types. Under conditions
of both “normal* and “high thresholding™ analysis the percentage of iead-X-rays in the paint
particles stiowed a similar distribution and generally contained titanium, barium and/or zinc as
distinctive co-constituent elements. Various amounts of calcium, sulfur and silicon were also
found. Aq initial characterization of the waste pile material, at normal thresholding, showed that
on avolume weighted basis it contained: 76% calciumrich particles (as in limestone and dolomite),
11%alcium/silica mix particles, 9%high silica, 1%as high iron particles (including pyrite) and
about 3% miscellaneousfeatures. Ondy trace amountsof aluminosilicate materials were observed.
Lead was observed in less than 6% of the features. Under high thresholding, lead was observed
in 60-80% of the waste pile particles and had a strong associationwith calcium, and to a lesser
extent with particles containing iron and sulfur. In general, lead X-ray relative intensity in these
features were either low (less than or equal to 15%) or high (greater than 50%).

A descriptive, hierarchical sorting algorithm for particle classification was developed based on
these generalities. Figure 1shows the structure of the scheme and indicates the specific X-ray
intensity criteriafor the elementsfound useful in classification.SIXmajor categories are delineated
on the leftside of the figure. A particle satisfying one of these categories was further partitioned
by the second set of sub-category criteria outlined to the right. No iron-sulfur-lead (Fe-S-PB)
particle elemental associations were observed in the paint samples for category 1, so no further
sub-classification was developed, and category 1 is only characteristic of waste pile materials.
Analyses of the paintsand the waste pile masenials were used, in an iterative fashion, establish
waste pile and paint sub-categories for categories 2-6 minimizing the degree of incorrect
classification, That is, criteriawere soughtwhich excluded Chat particles from the Paint subgroups
and vice versa. This emphasis on preventing incorrect classification is the chief value of a
descriptive classification scheme. However, it createsan “unresolved” class foreach major group;
the unresolved category contains observationscommon to both types of source material.
Table I shows results of applying the sorting schemeto the potential source materials. The rightmost
column indicatesthe number of lead-bearingparticlescharacterized for each specimen. The data
are presented two ways: (1) as percentages of the total volume Of lead-bearing features
characterized in each sample (which will be referred to as “volume-weighted*“)and are derived
from the sum of the classification results (Figure 1); and, (2) computed in similar fashion, but
normalized to the sum of feature volume times lead X-ray relative intensity percentage (which
- will be reférred to as “concentration-weighted*).The former corrects for the different estimated
volumes oflead bearing features. The latter adjusts for estimated lead content as well as volume
and is considered a more useful estimate of exposure potential.
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Cateaory Algorithm Sub-Cateaory Classification
If:
Pb>18 ‘
{(Fe>30 & 5>20)
orZn>18
or Ba>0.51
! HIT
v
|
1 Fe>30 & 5>20 &
Pb>1 | - .
FeS with Pb » Waste pile
A If: Fe>1 & Ti<1 & Ba<0.5 ~1—» Waste pile
Else If: ' .
2 | Pb 1-15 & Zn<18 : 4> pai
: Else If: Fe<1 & K<1 & Mn<1 aint
Elset—» Unresolved
3 | Else If: If. Fe>1 & Ti<1 & Ba<0.5 —I—» Waste p||e
Pb 15-50& Zn<18
Medium Pb Else If: Fe<i &K<1 & Mn<t ———+ Paint
THEN 8 (Ti>2 or Ba>2)
Else % Unresolved
Else It * T Ca>Z 8Tik1 & Baeps  ——p Wastepile
4 Pb 50-90& Zn<18 & (Fe>2 or Al>1) _
PbRichTHEN ... Elself: (Fe<t orTi>2 or —~—p Paint
Ba>2)
Else——» Unresolved
, v
5 Eise If: ‘ If. Ca>1.3 & Ti<1 & Ba<0.5° ——¥» Wastepile
Pb>90 Else IfTi> lor Zn>1 -+—» Paint
HiPh THEN
hd . Elsg=— Unresolved
+ . .
Eise If: b.1 & Mn>1 4~ Waste pile
6 Zn>18 | i
p-|Else if: Pb>1 & Fe<1 8 (Ti>1 .
Hi Zinc THEN or Ba>1) m —+—& Paint
— orif Pb>1 & Fe<1 85>4
v v Eiset—» Unresolved
- Else If:
¥ Ba>3
-. Has Ba i - ,
3 Next Particle

FIGURE 1 Criteria used I linear sorting algorithm for the classification of particles identified in the
potential source materials and household dust samples using the “High” threshoiding search technique.
Values represént percentages Of the net X-ray count obtained for each particle.
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Chat material sampleresults under the paint columnof Table lindicatethaton avolume-weighted
basis iess than 5%.and on a concentration-weighted basis less than 7%, of the waste pile lead is
incorrectly classified as being of paint in origin. The paint sample results under the waste pile
column show that gezerally less than 5%0f the lead is improperly ascribed for both weighting
methods. The unresolved component in each of these materials is quite variable. While results
exhibit considerable variability in the “signatures” of the possible contributing source materials.
the overall median percent identification for volume and concentration-weighted as the actual
source is high for both waste pile (69% and 79%. respectively) and paint (82% and 86%.
respectively) samples, and are similar for both weighting methods. To account for possible
limitations in samplesize and individual extreme values the medians are reported to describe the
central tendency of the distributions.

TABLE 1. Particle Classification Results Given by the Sorting Algorithm (Version
1.0) for Source Materials. Results Are Normalized First as a Percentage
of the Total Estimated Volume of Lead-bearing Features Found i Each
Specimen (Percent-volume), and Second as a Percentage of Total Estimated
Feature Yolume Weighted by the Lead X-ray Relative Intensity for Each
Particle (Percent-concentration)

Waste Piles Paint Unresolved

Percent Percent Percent Percent Percent Percent Number of
Volume Concentration Volume Concentration Volume Concentration particles!

Chat
glass 4.8 20 3.8 51 483 79 282
1w385b o1 ®.4 4.6 6.8 163 D8 210
brel01 71 0.4 3A 38 24 5.8 450
Iwifc %.6 735 0s- 47 39 218 07
brffc D.0 ®2 Hpa 0.2 9.8 136 302

Soil’
soill 585 505 00 09 415 495 178

Paint
P43lia 00 0.0 922 9%.0 78 4.0 272
P256ia 01 0.1 50 .3 749 6.6 272
P511p4 o1 0.1 ®.1 9.9 08 10 280
P430p1 01 01 B4 0.4 65 105 469
P509p2 05 03 693 66.7 303 A#0 386
P495p2 02 0.3 9.0 &84 6.7 113 575
djp00! 0.2 03 91.2 927 8.6 70 3%
0.6 06 752 89 2.2 6.4 339
) 16 1.7 9.7 ©8 8.7 855 279
" PI725a% 2.0 22 7.9 7.9 23.1 205 290
P172xb 26 25 P4 @03 55.2 552 287
PS06p1 53 53 03 . &89 54 58 . 400

‘Number ofpa;ticii:s that lead-bearing featureswhere found for ‘high’ thresholding.
*Yard soil samples from e eight homes were pooled together to form one sample for P A analysis.
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The soil data show no particles which could easily be identified as having been derived from
paint, but about half of the lead volume and concentration-weighted particles may be of waste
pile material origin (Table 1). Since paint sources were'not expected in the soil samples this
suggest that the algorithmis not prone to false positive indicationsfor paint. Addjtioriauy, previous
investigationshave found elevated soil lead concentrationsabove background and concluded the
waste piles were the primary source (ATSDR. 1994.1997). For the waste pile materials, paints
P172xb, P256ia and P256xa, and for the composite il sample, most of the unresolved entriesin
Table 1 were contributed by class category 5 particles (Figure 1) in which the lead
X-rays were greater than 90% of the total net count. Such features could be lead metal, various
lead oxides or lead carbonate particles; particles that may be naturally present in paint
compositions, may form in the waste pile ,materials and soil as the result of environmental
transformations. or may be derived from other sources, and be transported indoor. Without
additional instrumental capabilities, we could not distinguishamong these possibilities and they
reflect a limitation of the present study.

Huntetal. (1991) used a similar iterative procedure for development of adescriptive classification
scheme applied to lead in house dust samples. In their work, automotive lead categories were
included where the presence of bromine and lead in the X-ray microanalysis of particlesindicated
lead halides characteristicof automobile emissions. We did not include such classes as we did
not observe any such characteristic features in the samples we analyzed. It is possible that
unresolved particles of both the soil and the house dust samples contain lead of automotive
Origin.

Source Appeortienment Model

Application of the initial classification scheme to the house dusts derived fran home vacuum
cleaners is shown in Table 2. The descriptive classification for concentration-weighed results
showed significart contributions to the ambient house dusts by both the waste pile materials
(1-34%, median 17%) and the lead based paints (1-50%, median 12%), but over 60% of the lead
(32-99%)was unresolved. Repeat analysis on a second prepared sample from house dust vacuum
cleaner bag H465 indicated good precision of the method for application to the field samples
from the superfund area, particularly for the concentration-weighted results which varied by less
than 10%. The classification scheme was also applied to two samples not derived from the
supelfund area: sample H314 a control home matched for demographics (ATSDR, 1997). and
SYR collected separately as a preab‘atcn%'t sample from a residence in Syracuse, NY . Results
from both samples showed limited indication of contribution from waste pile sources or paint,
with the majority of classificationresults as unresolved.

The data set for source particle characterizationis not yet large encugh to supporta classification
scheme with substantially greater resolution. but the results can be used in a simple source
apportionment calculation. Since all of the potential source materials contain unresolved
constituents,such a model might be capable of attributing portions of the unresolved components
to characteristicsources.
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TABLE 2. . Particle Classification Results Given by the Sorting Algorithm (Version

' 1.0) for Home Vacuum Cleaner Dusts. Results are Normalized First as a
Percentage of the Total EstimatedVolumeof Lead-bearing Features Found
in Each Specimen percent-volume), and Second as a Percentage of Total
Estimated Feature Yolume Weighted by the Lead X-ray Relative Infensity
for Each Particle (Percent<oncentration)}

Waste Piles : Paint Unresolved
Percent Percent Percent Percent Percent Percent  Number of
. Volume Concentration Volume Concentration Volume Concentration particles'
H465 40.6 210 16.1 244 433 565 279

H465rep? 2711 219 242 256 48.7 525 323
H256 155 15.0 242 292 a3 558 171
Ha31 557 318 0A 0.6 . 439 61.6 177
H1i72 477 147 108 117 415 73.6 235
H273 502 173 279 503 219 324 168

H404 48.8 258 . 172 41.7 34.0 324 146
H474 278 142 05 0.9 125 849 ., 156
H282 46.8 338 28 36 504 626 163
H314control 112 0.8 65 24 823 98 8. 10

SYRcontrol* . 64 43 5.8 43 823 856 302

'Numb=r of particics that lead-bearing feanires where found for "high® thresholding.
2Repeat SAMple analysis
3Coatrol home remote from the superfundstudy Site. Bulk analyses showed concentrations < 200 ug/Kg of

lead. and only 10 lead-bearing features wen found after analysis of 665 high avenge atomic number
featurss,

“Study residence in Syracuse.NY sampled prior to lead paint abatement activities.

Source appartionment models based offZchemical mass balance can be developed for any data
partitioning approach; elemental composition. anntlflcatmnofcrystallmc components, isotope
ratio signatures, stc. (Watson, 1982). Johnson and Mclntyre (1982) showed that the mathematical
methods could be used for a particle class balance. After developing a sorting scheme for
classifying individual particle analysis results, it was applied uniformly to both potential source
particles and ambient aerosol particles. From this. characteristic particle typs distributions for
potential source materials established a source signature matrix analogous to that from bulk
elemental compositiondetermination. The general form of the mathematical relationship is:

C=A*S 1)

where C is a column matrix of particle types in the unknown or ambient sample, A is a column
matyix. of the (potential) source signatures, and S is a column matrix of the source strengths. A

"short FORTRAN routine was used to solve for S:

s =(A*A”)“*AT*C o (2)

- = Y - B = |
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This least squares procedure computed the fractionof each analyzedsource necessary to produce
the ambientsample signature. minimizing the difference between observed and predicted particle
type distributions.

The particle class balance model for apportionment is subject to the same assumptions as the
chemical mass'balance; () the number of components measured is greater than the number of
sources to be fit, (2) the source composition completely describes the ambient samples, (3) the
source compositions are constant, and (4) the sources are linearly independent of each other.
Without a complete characterization of each point or area source for each study home, we can't
address the constant source composition assumption. We used average signatures for the three
types of source materials sampled (chat, soil, paint). The analytical results for each group were
combined and classified according to the scheme in Figure I to provide the source signature
matrix. The source independence is also subject to question. Particulate lead deposited in soils
undergoes a variety of transformations alteringits (possibly) characteristicform as emitted fian
a source. Ut further investigation of the unresolved category 5 type particles, we have chosen
to include an additional generic source for these particles in the particle class balance source
signature matrix calling it ""common oxide'* with a classification entry of 100% in category' 5.

Particles with undetermined source were found in significant amounts in many of the source
material characterizations (Table 1) and were dominant in the analytical results of the household
dust samples. Ascribing their origin in the latter samples to a probable source was carried out by
aleast squares apportionment model. Average particle classificationsignatures{distribution across
the 16 classes in the sorting algorithm) were computed for waste pile materials, pamts and the
composite il sesults. A fourth signature for the common (unresolved) oxide type particleswas
also included in the source signature matrix; and apportionment was carried out using both the
volume- weighted and concentration-weighted summaries.

Applying the least squares apportionment model to the household vacuum dust, shown in Figure
2,demonstrate how the particulate lead in the collected house dust samplesare distributed across
four possible sourcetypes. Negative entries arise from the least squares fitting procedure. and for
the resultspresented here, are less than 10%. and indicate that the uncertainty associated with the
model results is low. Based on volume weighted signatures, waste. pile sources show greater
medium contributions than paint particles;«@% with a range of -8% to 57% and 16% with a
range of 2%to 80%. respectively. Transport of soils contributed about 36% (1%to 634). and the
common oxide was 15% (-3% to 38%y). By comparison. the 15house study of Hunt et al. (1994)
found that on a volume weighted bases (< 64 (un fraction) paint contributed about 33% (5% to
9B to the house dust and the common oxide panicle type about 4% (O to 140). Inthe latter
study, soils and mad dusts together, as external sources, accounted for 46% (% to 80%) of the
particulate lead; in the present work, soilsand waste pile materials together average 62% in their
<antribution. In both studies, the souse contributionswere highly variable across potential types.

i
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Apportionment results based on the concentration-weighted summaries for waste pile material
and paint conhibutions are similar to those of volume weighting alone (Figure 2). showing a

median of 21% (6%to 60%)for waste pile particles and 23% (-1% to 89%) for paint. However. U
the soil conhibution is substantially less, about 8% (-2% to 19%)and the common oxide source 5 8 st
strength IS higher at 29% (4% to 75%). These differences are the expected results since the ; ' B
common oxide features have a high lead content and much of the lead in soils is bound to larger ; ? s
particles (Johnsonand Hunt, 1995). ' ¥ 1
i .

p i

100. 4 .

{

B 1

Attributed Source

NN Waste
E3raint
P Asoi

XICommon Oxide

Percent Attrib uted To Source

Volume Concentration

Weighting Method

FIGURE 2. Boxplot describing results of applying least squares results of the classificationsorting algorithm
ta the interior household dust samples. Results are first normalized and weighted as a percentage of the
estimated volume of lead- beanngfeanues found in the attributed source. and second weighted as a percentage
of fotal estimated concentration. The box contains 50%0f the data. The crossbar within the box indicates
the median. Whiskers above or below the box describe the range and skewness for 95% of the data distribution.
The cireles show individual outliers beyond the 95th percentile.
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1] ‘ CONCLUSIONS
a
L, Using the IPA method and applying a least squares apportionment model, an analysis of lead

sources on the household vacuum bag dust at a mining waste superfund site was performed.
Based on particle volume-weighting the median proportions of lead derived from the conhibuting
sources is 26% from mining waste, 16%derived from a paint source, and 37% from soil. For
15% of the lead particles a specific originating Source could not be determined. Using the particle
concentration-weighting method the median proportions observed were 21%frommining waste,
23% from paint, 8% from soil. and 29% could not be identified. These results suggest that the
waste piles are at least as important a contribution source as lead-based paint to the presence of
indoor lead dust. It is reasonable to assume that a large percent of the lead derived from yard soil
and the unresolved or common category also originated from the waste piles. Therefare, the
overall contribution of the waste piles to house dust may be greater then the contribution from
paint, by both total particle volume and lead concentration-weighted methods. Knowlcdg;lof the
proportion of exposure from contributing sources is important in assessing exposure, health risk,
and development of health promotion activities.

To add additional resolution in the descriptive classification scheme and to more fully determine
the impact on lead in household dust derived from the waste pile and the conhibution of soil as
B a source and/or transport media, further characterizations need to be performed on particle
morphology (volume and sue) and particle concentration of lead found in household dust.
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